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The problem of the stability of Poiseuille pipe flow was studied numerically. The 
finite-difference equations which were solved are approximations to the nonlinear, 
axisymmetric, Navier-Stokes equations in cylindrical coordinates subject to a 
stream function perturbation. The disturbance to the stream function is of the form 
A,(R12/2 - R14/4) sin(&), which is axisymmetric, oscillatory, and fixed in space. 
The resulting solutions show the experimentally observed instability of the stream 
function and vorticity at Reynolds numbers of 10,000 and 100,000 for a finite-amplitude 
disturbance, A, = 1.0. The experimentally observed stability at a Reynolds number 
of 1000 and A, = 1.0 was also found. At a Reynolds number of 3000 and A, = 1.0, 
a neutral stability effect was noted. For a small-amplitude case, A, = 0.1, at a Reynolds 
number of lOO,OOO, the solution represents a damped disturbance which is consistent 
with classical small-amplitude theory. 

1. INTRODUCTION 

The stability problem for Poiseuille pipe flow has been of interest for many 
years. Osborne Reynolds (1880) first studied the problem experimentally and 
found that the laminar flow became unstable when R = Wd/v was nearly 13,000, 
where W is the average velocity over the pipe cross section, d is the pipe diameter, 
and v is the kinematic viscosity of the fluid. Further experiments by different 
investigators [Leite (1959), Bhat (1966), Kuethe (1956)] have shown that the 
critical, or transition, Reynolds number varies from approximately 2,000 to 
more than 40,000; the more idealized the flow conditions, the greater the critical 
Reynolds number. 

Analytical studies of instability in pipe flow began with Sex1 (1927) who used 
a small-perturbation theory in his approach to the problem. Others (Corcos and 
Sellars (1959) and Gill (1965) are the most prominent) have also contributed 
to the axisymmetric approach begun by Sexl. However, the small-perturbation 
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theory approach has not yielded instability at any Reynolds number, regardless 
of how large the value might be. 

The current general consensus is that Poiseuille pipe flow is computationally 
stable to infinitesimal disturbances at large Reynolds numbers. This conclusion 
is based on the failure of the small-disturbance approach to predict the onset 
of turbulence while the experimental evidence is that turbulence is produced 
provided that the disturbance and Reynolds number are sufficiently large 

The experimental instability has been attributed to entrance effects, surface 
roughness, external vibrations, and to the instability of the growing boundary 
layer as the flow develops in the entrance region. However, experiments can be 
conducted with the first three possible causes eliminated to examine the boundary- 
layer instability idea. Tatsumi (1952) studied the boundary-layer instability 
concept with asixymmetric disturbances and found that the critical Reynolds 
number was nearly 10,000. 

The asymptotic series approach taken by Corcos and Sellers (1959) and by 
Gill (1965) produced results inconsistent with experiment since the series approach 
yielded no instability of the flow. This opens the question of whether a strictly 
numerical approach would not be more appropriate in determining features of 
Poiseuille pipe flow when subjected to an axisymmetric disturbance. Davey and 
Drazin (1969) sought a numerical (finite-difference) solution to the instability 
problem in considering yet another attempt at the axisymmetric small-disturbance 
problem first formulated by Sex1 (1927). Davey and Drazin obtained numerical 
results which were consistent with the asymptotic series results obtained by Corcos 
and Sellars, and Gill. Again, the axisymmetric small-disturbance approach yielded 
results which were not consistent with experiment when the experimental Reynolds 
number is sufficiently high. Graebel(l970) considered a small-amplitude azimuthal 
disturbance and found instability for azimuthal wavenumbers greater than two. 
However, the corresponding minimum Reynolds numbers were much too low to 
correspond to experimental values. In spite of this apparent shortcoming, Graebel’s 
study appears very promising for it has apparently opened the way for further 
studies of the azimuthal disturbance component. 

2. ANALYSIS 

A more accurate and meaningful numerical approach would be to consider 
the nonlinear problem in its full form and apply the appropriate boundary and 
initial conditions in order to represent an axisymmetric finite-amplitude distur- 
bance. The nondimensional Navier-Stokes equations are the governing differential 
equations, along with the continuity equation - $+ v.vu+vp-~v~8=o 
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and 
V.P==O. (2) 

In Eqs. (1) and (2), 7 is the nondimensional velocity vector, p is the nondimen- 
sional pressure, t is the nondimensional time, R is the Reynolds number, and V 
is the nondimensional gradient operator in cylindrical coordinates. 

After elimination of the pressure from Eqs. (1) and (2), we define the vorticity, 
Q, by 

i-2 = 24, - w, (3) 

and introduce the stream function, #, by 

$3 UC-- 
r 

and 

A w=- 
r ’ 

so that the governing equations now become 

(4) 

(5) 

(6) 

Simultaneous solution of Eqs. (6) and (7) for Q and $ yield the description 
of the flow field for whatever physical problem is described by the imposed 
boundary conditions. This approach has been followed by Fromm and Harlow 
(1963, 1963, 1964) in a variety of problems, and by Thoman and Szewczyk (1969) 
and Hirota and Miyakoda (1955), both for developing flow around a circular 
cylinder. Greenspan et al. (1964), Payne (1958), Ingham (1968), Briley (1968), 
and Dennis and Shimshoni (1964) have also used this approach for various 
problems. 

Of all the publications in this area, the most closely allied work is that by 
Dixon and Hellums (1967), who treated both the stability of Poiseuille flow and 
plane Poiseuille flow. Their results in the case of plane Poiseuille flow show the 
experimentally observed instability, but in the case of Poiseuille flow they have 
shown only that a disturbance imposed on the field uniformly on a radius is 
amplified at a Reynolds number of 100,000. At a Reynolds number of 10,000, 
the results of their calculation show that the disturbance may either be amplifying 
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or decaying. At a Reynolds number of 1000 this solution shows the experimentally 
observed decay of the disturbance. Their calculation procedure was to use the 
alternating direction-iteration (ADI) method for solution of the vorticity transport 
equation and successive over-relaxation for solution of the stream-function 
equation. They obtained stream-function values only at every odd time step. 
They also used downstream boundary conditions which introduce periodicity 
into the flow field. Still, on the whole, their results seem to be valid. Our calculation 
procedure, disturbance, and downstream boundary conditions differ considerably 
from those used by Dixon and Hellums. 

For the application of Eqs. (6) and (7) to the problem of Poiseuille flow in a 
pipe subject to a finite-amplitude disturbance, it is convenient to break both $J 
and Q into two parts each. Therefore, let 

and 
*(r, z, f) = F(r) +.W, z, t> (8) 

QQ-, z, 0 = G(r) + g(r, z, 0, (9) 

where F and G refer to the main flow and f and g refer to any perturbation of 
the main flow. 

Since F and G are main flow quantities for Poiseuille pipe flow, they are given 
in dimensionless form by 

F(r) = +r2 - &r4 (10) 

and 

G(r) = 2r. (11) 

Therefore, Eqs. (6) and (7) can be written as 

and 

f& + r (+) - -f-g. 7 (13) 

It should be noted that, to this point in the development, no assumption has 
been made which linearizes Eqs. (12) and (13); therefore, the equations are suitable 
for describing the behavior of the flow for both large- and small-amplitude 
disturbances. 

The region over which Eqs. (12) and (13) are to be solved is an axisymmetric 
dimensionless field. The length L in the axial direction z of the field is much 



16 CROWDER AND DALTON 

greater than unity. The line r = 0 represents the center line of the pipe and r = 1 

represents the wall. 
The boundary conditions applied at r = 1 are the normal conditions of no slip 

and no flow through a solid boundary, 

s U=--E-‘=O 
r (14) 

and 

Axial symmetry at the center line, r = 0, implies that 

fr = u, = g, = Iv, = 0. (16) 

Since the governing differential equations (12) and (13) are singular on the 
line r = 0, and we demand that every quantity be bounded on that line, we have 

u = u, = Iv, = g =fz =fr = g, = g, = 0. (17) 

On the line z = 0, fully developed pipe flow must exist; therefore, we have 

g=o on z = 0. (18) 

In order to make the solution as free as possible on z = 0, we use the condition 

fz = 0, (19) 

which allows the streamlines to move radially. 
The downstream boundary conditions are somewhat harder to specify. Ideally, 

they are specified such that L is located so that no further change occurs in the 
solution by increasing L. We have followed the suggestion of Thoman and 
Szewczyk (1969) of using 

fx = 0, (20) 
and either 

g zz = 0 (214 
or 

g, = 0, @lb) 

since use of fzz = Af and g,, = Bg imply periodicity of the flow field for A and B 
not equal to zero. Boundary conditions (20) and either of (21) do not imply 
the undesired periodicity of the flow field. It should be noted that these conditions 
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are an approximation to the condition that derivatives along a streamline are 
zero either for L > 1, or for streamlines parallel to the z axis. 

Two considerations govern the form of the disturbance function which may be 
chosen. First, the disturbance should be modeled on a physically realizable 
system. Second, the disturbance function should not violate the continuity equa- 
tion. The function 

f(R, , 2, , t > 0) = (F - RI4 4) A, sin A,.& (22) 

provides a mathematical disturbance to the stream function which is quite similar 
to the form of a disturbance generated by an infinitesimally thin hollow cylinder 
which is oscillated axially about the point (RI , Z,), where A, is the amplitude 
and A, is the period of the disturbance with 0 -=c R, < 1 and 0 < Z, <<L. This 
type of disturbance is similar to that used by Leite (1959). Application of Eq. (13) 
yields the vorticity at the point (RI , Z,) as 

gV4 9 Z,t 3 0) = k (f,, - & + fz,). (23) 

Since we assume that the disturbance is generating any deviation from the fully 
developed flow solution, we have for initial conditions 

and 

for 

f(r, z, 0) = 0 (24) 

dr, z, 0) = 0 (25) 

O<r<l, O<z<L. 

Now we turn to the boundary condition for g on the line r = 1. Since r = 1 
is a solid boundary and fi = 0 at every point on r = 1, we also have fin = 0. 
Therefore, we substitute this condition with Eq. (15) into Eq. (13) to obtain 

g = -& on r= 1. 
r 

For the boundary and initial conditions to be consistent, we must have 

and 
f@, z, 0 = 0 

g(0, z, t) = 0. 

GW 

(2W 
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3. THE FINITE-DIFFERENCE EQUATIONS 

For the purpose of computation, the differential operators equation in (12) 
are replaced by difference operators in the following way: 

g9 = & k,“,l.j - &“_,,j] + O(Lw), (28b) 

gz = & [g&+1 - &-11 + U(Az2). (28~) 

and 
1 

gzz = 422 [g&+1 - 2fzr + &ll + Wz2), GW 

with like definitions for f(r, z, t) and its derivatives. The grid system initially 
chosen was a nonsquare, nonuniform system, but numerical experimentation 
indicated that equal spacing in both coordinate directions yielded a more accurate 
solution. Experimentation with the grid spacing showed that mesh spacings of 0.1 
in both the radial and axial directions was satisfactory. For a more detailed 
discussion of this and other points involving the grid system, see Appendix B, 
Crowder and Dalton (1969). 

The differential equation governing the stream function, Eq. (13), can be written 
in the following forms: 

and 

Pkf - fiz = Plcf +.f-A - ffT + r&T (29 

pkf - fT1 + if7 = pkf + faz + rg, (30) 

by adding the quantity pkf to both sides and factoring the equations appropriately. 
This technique is the AD1 method of solving a difference equation. Substitution 
of the necessary derivatives from Eq. (28) into Eqs. (29) and (30) yields 
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and 

pk f $~*k+~ - (f :$‘):;;‘” + + (f :;‘)j+’ = Pkf :;l’k+l + (f :;‘>$i-’ + rigi,, , @lb) 

where the superscripts II and k indicate, respectively, the time step and the iteration 
level from which the value of the function f is taken. Equations (31a) and (31b) 
can be generalized as 

(pkl + H>.f = D, (32) 

where H is a tridiagonal matrix operator, I is the identity matrix, D is a known 
column vector, and f is the solution vector. 

The quantities plc in Eq. (31) are iteration parameters which are added to the 
equation to increase the speed with which convergence to the solution is obtained. 
The “best” values of the pk are given by Varga (1963) and Young (1962) for a 
square equally spaced grid for Laplace’s equation to be 

Pk = b ; ‘+lJm+=, 
0 k = 1, 2 ,..., m, (33) 

where a and b are, respectively, the maximum and minimum eigenvalues of the 
matrix operator H in Eq. (32). Unfortunately, no analytical values of pk can be 
obtained for the grid and difference equation which we have specified, but Briley’s 
(1968) and our experiments indicate that the values of a and b above and a value 
of m = 5 yield the greatest convergence rate if the values off,rj are used as initial 
approximations to the values of fz:‘. We now introduce the finite-difference 
operators from Eq. (28) into Eq. (12) to obtain 

and 
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The time step, At, , must be much less than one, and it must be the same between 
the n + 1 and the 12 + 2 time steps. We have treated the time step as a parameter 
which may be selected subject to the restriction dtzn+z = df,,+r , in order to 
improve the convergence of the iterative procedure which must be used to solve 
the difference equations (31a, b) and (34a, b). The initial value of the time step 
was 0.02. It was allowed to vary over the range 0.0075-0.025 in order to maintain 
a stable solution. 

We now need to transform the boundary conditions to a finite-difference 
representation. On the line r = 0 (i = l), we have from Eqs. (27a) and (27b) 

and 

fl",,j = 0 (354 

respectively, for all j and n. On the line Y = 1 (i = Imax), we have from Eqs. (14), 
(15), and (26) the conditions that 

and 

W-9 

(36c) 

where the differential operators are described by differentiated Lagrangian inter- 
polation formulas. The difference representations for the boundary conditions 
specified in Eq. (36) were applied over the range (I,,, - 4 < i < Imax + 1). 
This range of grid points was used since it was found to yield more accurate 
results when Eq. (36b) was used to eliminate the stream function value at Z,,, + 1. 

From Eqs. (18) and (19) we have for the line z = 0 (j = l), 

and 
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At the disturbance point (R1 , 2,) = (0.6,2.0), we have from Eqs. (22) and (23) 

f;,,z, = 
( 1 (Am 

sin A,&) 

and 

On the downstream boundary z = L (j = Lax), we have from (20) and (21a, b) 
that 

a2f 0 -= ) 
aZ2 

and either 

or 

ag 0 az= * (394 

In Eq. (39) the j index has the range (Jmax - 4 <j < J,&. This range of j 
values is used to avoid using function values at points located outside the flow 
field. The boundary conditions which we used are Eqs. (39a) and (39c). 

The initial conditions are given from Eqs. (22) and (23) as 

and 

f%,j = 0 Pa) 

g:,j = 0. W’b) 

The difference equations (31a, b) and (34a, b) are written to be solved using 
an adaptation of the AD1 method subject to the boundary conditions, Eqs. (35)- 
(40). The AD1 method employed is an adaptation of a technique of Varga (1963). 

In a nonlinear set of coupled partial differential equations such as (12) and (13) 
no linearization can give a totally correct solution, as witnessed by the failure 
of linearized stability theory to predict transition for Poiseuille pipe flow. In 
order to determine analytically what the correct approximations are to Eqs. (12) 
and (13), it would be necessary to either linearize them or their nonlinear approxi- 
mations and study the form of the resulting approximation, truncation, and 
round-off errors. A similar approach has been taken by Fromm and Harlow (1963) 
and Fromm (1963) for a rectangular coordinate system. However, it was felt 
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that an experimental verification of correctness should be sufficient since our 
systems of approximations (31) and (34) are consistent with Eqs. (12) aud (13) 
under our solution sequence. Several different mesh combinations were considered 
in attempting to obtain the optimum mesh spacing. We found that uniform 
spacings of 0.1 and 0.05 in both coordinate directions yielded essentially the 
same results; therefore, we chose a spacing of 0.1. This, consistent with the time 
step mentioned earlier, generated a stable solution. 

Before explaining the calculation procedure, we set forward the convergence 
tests that are applied. For the stream function we used 

, f $Lk+2m 
(41) 

where m is the number of p values used in the iterative procedure and k is the 
stream-function iteration counter. We chose Ed such that Ed < 1.0 x 10-5. 

The tests used for convergence of the vorticity are 

and 

(42b) 

In Eqs. (41) and (42) I is the vorticity iteration counter. Equation (42a) was used 
where i < Imax and Eq. (42b) was used when i = Imax. We demanded that 
E!$ = ki 9 and that cp8 3 Ed at all iterations. We recognize that these convergence 
tests are intuitive rather than mathematical, for we know of no theoretical criterion 
for convergence. Our convergence criteria come under the classification of 
Birkhoff’s (1960) “plausible intuitive hypothesis.” 

The vorticity and stream function calculations are stopped when 

T > 20, (43) 

where T is the real time, or when a solution pattern was established. 
The solution to the difference equations is accomplished iteratively by first 

advancing the vorticity using Eqs. (34a, b) for alternate time steps. Then 
Eqs. (31a, b) are iterated to convergence and the vorticity is recalculated on the 
basis of the updated stream function. This sequence is continued until the vorticity 
converges. Then the process is begun again in sequence with the alternate equation 
of Eqs. (34a, b) for the next time step. 
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4. RESULTS AND DISCUSSION 

Five examples have been chosen to provide the means of determining the 
stability of Poiseuille pipe flow. The examples will be referred to as Cases l-5 
and are as follows: Case 1 is for a Reynolds number of 1000 and a disturbance 
amplitude, A, from Eq. (38a), equal to 1.0. Reynolds numbers of 3000, 10,000 
and 100,000, each at an amplitude of 1.0, represent Cases 2, 3, and 4, respectively. 
Case 5 is at a Reynolds number of 100,000 and an amplitude of 0.1. 

The results for all cases were calculated with the disturbance located at the 
point (& , 2,) = (0.6,2.0) on a square mesh of size 0.10 and with an initial 
time step of 0.02. The criterion for stability was taken to be the decrease in 
maximum value of the disturbance stream function with axial distance. The time 
necessary to compute the solutions for Cases l-5 varied from 5 to 6+ hours of 
Scientific Data Systems SIGMA 7 computer time. These computation times are 
quite reasonable when one realizes that all computations were performed in 
double precision and that a stream function was computed for each iteration 
of the vorticity. The calculation of more stream functions than might be thought 
necessary (see Dixon and Hellums (1967)) is mandatory for the consistency of 
the difference and differential equations. It might also be noted that double- 
precision operation in SIGMA 7 is a factor of 8-16 times slower than a CDC 6600. 
For a more complete discussion of the results obtained or for plots of the stream 
function and vorticity versus axial distance, see Crowder and Dalton (1969). 

The first four cases are finite-amplitude disturbances since we have taken 
these stream function disturbances to be on the same order of magnitude as the 
fully developed flow stream function at the location of the disturbance. The 
remaining case, Case 5, represents a small-amplitude disturbance since the A, 
value has been taken to be an order of magnitude less than the fully developed 
flow stream function of the location of the disturbance. 

The criterion used for determining when a flow example was stable was based 
on whether or not the disturbance stream function was amplified as downstream 
motion occurred. If the disturbance decays with increasing axial distance, then 
the flow is deemed stable; if not, then the flow is considered unstable. 

In considering the detailed calculations for each example, it was noted that 
the maximum value of the disturbance stream function and vorticity moved off 
the radial line on which the disturbance was applied as downstream motion 
progressed. It was felt that, to represent the solutions accurately, the maximum 
disturbance values needed to be located for each solution time step since these 
maximum values truly represented the disturbance behavior. Therefore, the 
results are given in terms of the maximum disturbance values as the disturbance 
wave moves downstream. 

Case 1, for a Reynolds number of 1000 and a disturbance amplitude of 1.0, 
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is depicted in Fig. 1. The behavior of the maxima of the disturbance stream 
function is shown in Fig. la, which shows that the disturbance grows to a value 
of 0.22 and then decreases to a value of about 0.15 at an axial distance of 3.5 and 
a time of 2.006. For greater times, as the disturbance continues to move down- 
stream, the stream function values continue to decrease although on a more 
gradual scale. In essence, Fig. la is showing that Case 1 is satisfying the stability 
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FIG. I. (a) Maximum value of disturbance stream function vs downstream distance, R = 103, 
A,,, = 1.0, A, = T. (b) Maximum value of disturbance vorticity vs downstream distance, R = loS, 
A, = 1.0, A, = r. 
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1 
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A 3.984 . 4.504 1 

FIG. 2. (a) Maximum value of disturbance stream function vs downstream distance, 
R = 3 x loS, A, = 1.0, A, = n. (b) Maximum value of disturbance vorticity vs downstream 
distance, R = 3 x 103, A,,, = 1.0, A, = TT. 

criterion imposed earlier in this section. At a Reynolds number of 1000, it has 
been found that Poiseuille pipe flow is stable when subjected to a finite-amplitude 
disturbance, Leite (1959). The results presented here indicate that the experimental 
observation is verified. The disturbance vorticity plot, Fig. lb, corroborates 
this conclusion. 
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At a Reynolds number of 3000 and an amplitude of 1.0, Case 2, the calculations 
plotted in Fig. 2 show that the disturbance quantities are not decaying with 
downstream distance; however, neither are they amplifying. Hence, Case 2 is 
deemed to be a neutrally stable situation. Experiments at this Reynolds number 
have been inconclusive in setting a rigid physical criterion for instability. 

At an amplitude of 1.0 and a Reynolds number of 10,000, Case 3, it is seen 

0.3 I I I I I 

0.2 

0.1 

f 0 

-0.1 

-0.z 

Drmensionless 
0 0.500 
* 1.000 
n 1.500 
0 2.038 
v 3.006 
0 3.006 
. 3.496 
A 3.988 

Time 

! 

60.0 I I I I I 
4 

0 0.500 
A 1.ooo 

FIG. 3. (a) Maximum value of disturbance stream function vs downstream distance, R = UP, 
A, = 1.0, A, = TT. (b) Maximum value of disturbance vorticity vs downstream distance, R = lo’, 
A,,, = 1.0, A, = ?r. 



POISEUILLE FLOW IN A PIPE 27 

0.1 - 

f o- 

Dimensmnless Time 
0 0.500 
n 1.000 
0 1.500 
0 2.036 

-0.2 - 

-0.3 I I I l A 

v 2.516 
0 2.996 
. 3.476 

2.0 3.0 4.0 5.0 6.0 7.0 8.0 

z 

60.0 - 
I I I I I 

50.0 - (b) 

40.0 - 

I 

10.0 - 
Dlnenslonlcss Trlw 

9 0.0 - 00.500 

A1.00" 
q 1.500 
0 2.016 
V2.516 
02.996 
.X.476 1 

-50.0 - 

40.0 I I I I I 

2.0 3.0 4.0 5.0 6.0 7.0 8." 

7. 

FIG. 4. (a) Maximum value of disturbance stream function vs downstream distance, R = 105, 
A, = 1.0, A, = n. (b) Maximum value of disturbance vorticity vs downstream distance, R = 105, 
A,,, = 1.0, A, = r. 

that the disturbance quantities are slightly increasing with downstream distance. 
This implies instability according to the criterion established earlier. Physically, 
instability is expected at a Reynolds number this large for a sufficiently large 
disturbance. Therefore, the failure of the calculated values to decay infers insta- 
bility. Furthermore, the calculation procedure failed to converge past a computa- 
tion time of 3.988 in spite of several corrective attempts (which included considering 
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smaller time steps). The failure to converge is taken as further evidence of insta- 
bility. 

The largest Reynolds number case, Case 4, at an amplitude of 1.0, is expected 
to be highly unstable in a physical situation. The results for this calculation, 
shown in Figs. 4a and 4b, are similar to those noted for Case 3. The increasing 
maximum amplitude of the disturbance stream function with downstream progres- 
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FIG. 5. (a) Maximum value of disturbance stream function vs downstream distance, R = 106, 
A, = 0.1, A, = T. (b) Maximum value of disturbance vorticity vs downstream distance, R = 106, 
A, = 0.1, A, = VT. 
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sion is taken to represent instability. This conclusion is further corroborated 
by the failure of the solution to converge, as happened in Case 3. Both features 
taken together strongly suggest instability. Because of the higher Reynolds number, 
the results obtained for Case 4 are considered to strengthen the observations 
made for Case 3. 

The small-amplitude case, Case 5, is taken at a Reynolds number of 100,000 
and an amplitude of 0.1. If the numerical solution is to be consistent with classical 
instability theory, then Case 5 should yield a stable solution. This is, in fact, 
the actual case. Figure 5 shows a fairly steady and relatively strong decrease 
in both of the disturbance functions. These results (and their consistently smaller 
magnitudes when compared to the other cases) suggest stability. 

5. SUMMARY AND CONCLUSIONS 

The feasibility of a numerical technique to determine the response of Poiseuille 
pipe flow to a given disturbance has been demonstrated. This problem has been 
treated experimentally many times with well-substantiated results which serve 
as a basis for comparison with the present approach. 

The results of the preceding section demonstrate that the numerical approach 
contained herein does yield a stable solution to an axisymmetric disturbance of 
the form f(& , 2, , t,) = (1 .O) * ((R12/2) - (I&*/4)) sin rrt, at a Reynolds number 
of 1000. The stream function disturbance is seen to decay with downstream axial 
distance for this example. 

At a Reynolds number of 3000 and a disturbance amplitude of 1.0, the distur- 
bance stream function is not seen to decay with increasing downstream distance; 
however, no growth of the disturbance stream function is noted either. This 
Reynolds number calculation seems to be neutrally stable. 

For a Reynolds number of 10,000, the same disturbance function was found 
not to decay but was carried downstream with slightly increasing amplitude. 
This result failed to meet our stability criterion cited in Section 4, i.e., if the 
amplitude of the maximum value of the disturbance stream function decays 
with downstream axial distance, then the flow is deemed stable to the disturbance 
at the given Reynolds number. 

At a Reynolds number of 100,000 and a disturbance amplitude of 1.0, the 
stream function disturbance was also amplified with downstream axial distance. 
This is definitely an unstable condition according to the cited criterion. 

The four examples for which results have been cited were all for a disturbance 
amplitude of 1.0 which is, of course, a finite-amplitude disturbance. The results 
of these calculations have been consistent with what is expected from the physical 
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problem for the same conditions. To examine what would happen for a small- 
amplitude disturbance, we considered a flow with Reynolds number of 100,000 
and a disturbance amplitude of 0.1. We found for this case that the disturbance 
was definitely damped as it progressed downstream. 

On the basis of preliminary, short computer runs, it was found that, to insure 
numerical stability and improve accuracy of the solution, an equally spaced grid 
was necessary for the solution of the finite-difference equations. 

For the disturbance used, a flow field of 14 radii appears to be of sufficient 
length to represent an “infinite” length for the times covered by these calculations. 
Double-precision arithmetic was found to improve the numerical stability of 
the solution and to speed the convergence as well as reducing total computing time. 

In conclusion, we say that Poiseuille pipe flow is unstable to an axisymmetric 
disturbance of the form f(R, , 2, , tn) = (1.0) . ((R12/2) - (R12/4)) sin 7rt, at 
Reynolds numbers of 10,000 and 100,000 is stable at a Reynolds number of 1000 
and is neutrally stable at 3000. When the disturbance amplitude is changed from 
1.0 to 0.1 at a Reynolds number of 100,000, we found that the flow was stable. 
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